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Abstract

Modern approaches to text to speech require the entire input
character sequence to be processed before any audio is synthe-
sised. This latency limits the suitability of such models for time-
sensitive tasks like simultaneous interpretation. Interleaving the
action of reading a character with that of synthesising audio re-
duces this latency. However, the order of this sequence of inter-
leaved actions varies across sentences, which raises the question
of how the actions should be chosen. We propose a reinforce-
ment learning based framework to train an agent to make this
decision. We compare our performance against that of deter-
ministic, rule-based systems. Our results demonstrate that our
agent successfully balances the trade-off between the latency of
audio generation and the quality of synthesised audio. More
broadly, we show that neural sequence-to-sequence models can
be adapted to run in an incremental manner.

Index Terms: text to speech, reinforcement learning

1. Introduction

Efforts towards incremental text to speech (TTS) have typically
focused on more traditional, non-neural architectures [1} 2} [3].
However, advancements in neural TTS [4] |5, 6] have resulted
in near human levels of naturalness and thus motivate an explo-
ration of neural incremental TTS systems.

Neural TTS systems typically adopt sequence-to-sequence
architectures which require the entire input sequence to be pro-
cessed before generating any units of the output sequence. This
offline characteristic is often useful; for example, a question
mark at the end of a sentence would impact the intonation of
preceding words. On the other hand, synthesising speech in-
crementally from text could be valuable. Such a model could
be placed at the tail-end of an incremental speech recognition
and machine translation pipeline to obtain a real-time speech-
to-speech translation system.

The development of these streaming, end-to-end architec-
tures has seen considerable attention for the tasks of automatic
speech recognition [7, I8 9l [10] and machine translation (MT)
(L1 120 [130114]). Inspired by the approach of [[12], our proposed
framework develops an agent that decides whether to trigger
the encoder with the next input character (i.e., READ in Figure
[I). or trigger the decoder with the characters read thus far (i.e.,
SPEAK in Figure[T). In this manner, our approach enables us to
start generating mel-spectrograms while having read only a part
of the input sentence. The mapping of these mel-spectrogram
frames to raw audio waveforms can be achieved with an existing
neural vocoder [4}[15] by adjusting its inference behaviour.

The challenge then lies in deciding when to incorporate an
additional character into this restricted input subsequence. We
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Figure 1: Trajectory for an arbitrary sequence of READ (red,
along y-axis) and SPEAK actions (blue, along x-axis)

use the REINFORCE algorithm [[16] to train an agent to make
this decision.

2. Background

[17] proposes an approach for incremental neural TTS. The
model is based on the prefix-to-prefix framework [18]] and lever-
ages a policy which maintains a fixed latency (in terms of num-
ber of words) behind the input. However, it would be chal-
lenging to construct such a rule-based approach if the desired
latency was to be measured in a more granular unit, such as
characters or phonemes. Furthermore, a dynamic, learnt policy
would allow this approach to be used for new languages and
speakers without manual calibration of these parameters.

The arena of incremental machine translation has also seen
advancements. [11]] proposes the framework of READ/WRITE
and once again uses rule-based policies to enable incremental
machine translation. [12]] models this discrete action selec-
tion task using a reinforcement learning (RL) system, which
we adapt in our work. Alternatively, [[13] turns this non-
differentiable framework into a supervised learning problem by
training a model on sequences of interleaved READ/WRITE de-
cisions generated from a pre-trained model.

A major challenge in any sequence transduction task is to
align the target sequence with the source at each step. [7, 18] pro-
pose methods that leverage the RNN-T model [19] to address
this for the task of speech recognition. As an alternative, the ap-
proaches in [9, [10] propose architectures which utilise the fact
that in speech recognition, the length of the target sequence is
less than that of the source. [20}[21}122] use encoder-decoder ar-
chitectures with attention, but compute the attention alignments



in an online manner.

[23] adapts the online, monotonic attention mechanism pro-
posed by [24] for the Tacotron 2 model. However, the motiva-
tion behind this was to ensure the surjectivity of the mapping
between input elements and output frames and thus, the en-
coder and decoder architectures remain offline. Furthermore,
the atomic input unit is a phoneme which can only be computed
given the entire word. RL based approaches have also been
used to generate attention weights for image captioning [25],
[26l 27]. However, these attention mechanisms generate hard
attention weights which is undesirable for TTS [28].

3. Tacotron 2 Modifications

Our base model builds on the Tacotron 2 model, with certain
modifications for the incremental setting. Note that while these
modifications may affect the quality of synthesised speech, they
are necessary restrictions for incremental synthesis.

The encoder is altered by simply removing the convolu-
tional layers and replacing the bi-directional LSTM [29] [30]
with a uni-directional one. We further discard the post-net
module, leaving only the attention mechanism that renders this
model offline. Rather than modifying the computation of the
alignment weights and potentially enforcing a hardness con-
straint, we maintain the soft attention weights and suitably re-
strict its scope as described in Section[d]

Finally, note that Tacotron 2 also has a vocoder component,
which maps the mel-spectrogram to the raw audio waveform.
We use a different vocoder architecture [15]] and adapt its infer-
ence behaviour to work in a purely auto-regressive manner by
restricting the number of mel-spectrogram frames input to its
residual and up-sampling networks.

For the remainder of this paper, we use this modified
Tacotron 2 architecture to generate mel-spectrograms with the
understanding that any incremental vocoder can be leveraged
for synthesis.

4. Incremental Text to Speech using
Reinforcement Learning

Inspired by [12]], we maintain an increasing buffer of input char-
acters, which the model attends over to synthesise the next mel-
spectrogram frame. We then train an agent to make the decision
of whether to add the next input character into this buffer, or
to synthesise a frame of audio based on the information in the
buffer. To train this agent, we leverage the RL paradigm.

4.1. RL Setup and Notation

The RL setup consists of a decision maker, called the agent,
interacting with an environment, typically over a sequence of
discrete steps which we index by j. At the jth interaction step,
the agent selects an action a;, which the environment executes,
and returns a new observation o;.1 (which is a representation
of how its internal state has changed) and a numerical reward,
rj+1. In addition, the environment returns a flag which indi-
cates whether this particular episode of interactions has com-
pleted, called the terminal flag. The task for the agent, then, is
to learn a mapping from the space of all possible observations
to a suitable action. Such a mapping, called a policy, should
attempt to maximise the cumulative numerical reward achieved
over the course of an episode (typically discounted temporally
by a factor v € [0, 1]) [31].

Formally, let x1, ..., xn denote the sequence of input char-

acter embeddings and hy, ..., hy denote the corresponding en-
coder outputs from our modified Tacotron 2 (Section [3). Our
modifications enable h; to be computed without knowledge of
Xi+1, ..., XN. Let the associated ground-truth mel-spectrogram
y € R¥28%T consist of T' frames. At the jth step of an episode,
let R(j) € {1, ..., N} denote the number of characters that have
been read and S(j) € {1,...T} represent the number of audio
frames generated (aligned by teacher-forcing [4)] during train-
ing). Let a; s(;) denote the alignment weight over h; while
generating the S(7)th decoder output, § ;).

Instead of using {hi,...,hx} to compute these weights
(and thence the attention context), we use our restricted buffer
{hi1,...,hg;)}. This approach guarantees that, at the time of
synthesising the S(j)th frame of audio, our Tacotron 2 model
only has access to the first R(j) characters.

4.2. Agent

The actions available to the agent are:

* READ: (step along the vertical axis in Figure [1)) Pro-
vides the attention mechanism with an additional char-
acter over which it may attend.

* SPEAK: (step along the horizontal axis in Figure[I) Re-
sults in the generation of a mel-spectrogram frame based
on the characters read thus far.

Then, a desirable learnt policy might be the agent learning
to SPEAK as soon as there is enough READ context, and to re-
sume READing only when the existing context is fully synthe-
sised. Observe that the offline behaviour can also be obtained
as a specific policy (READ all characters and then SPEFAK until
all frames are synthesised).

4.3. Environment
The environment uses a trained modified Tacotron 2 model to
provide the agent with the requisite information and feedback.

4.3.1. Observations

Suppose we have just received action a;_1. The environment
increments the appropriate counter (R(j) or S(j), based on
aj—1) and passes hi, ..., hg(; to the attention module, which

computes o g5y, ---s R(j),5(;)- The context vector is then
R(5)
Cs(j) = Z a5 hi (1)

=1
Since we want o; to contain enough information for the
agent to decide whether to READ or SPEAK, we define o; to be
the concatenation of:

* cs(j): The attention context vector based on the R(j)
characters read thus far.

* a sk :]: A fixed length moving window of the latest
attention weights. This term was found to be crucial for
learning a good policy.

* ¥s(;) (during training) or ¥ 5(;) (during evaluation): The
most recent mel-spectrogram frame.

4.3.2. Rewards

Underpinning our RL framework is the understanding that the
quality of the generated output may trade-off against the delay
incurred. Thus, we define our reward as

rj = rJD + er 2)



where TJD encourages low latency while T'jQ encourages high
quality synthesis. Motivated by the treatment in [12], we define

TjD = erR + Tfp 3)
where

. erR is a local signal to discourage consecutive READ
actions

erR ‘= w X (sgn(c; —c*) + 1) (€]

¢; is a counter for consecutive READs, ¢* is an accept-

able number of consecutive READs and w < 0 is a

hyper-parameter.

o 4 is a global penalty incurred only at the end of an

episode

3 =B x |dr —d* 4 )

Geometrically, d7 corresponds to the average proportion
of area under the policy path (Figure[T). A value of 1 for
dr corresponds to READing the entire input sequence
before generating any output, while O corresponds to the
unattainable scenario of synthesising all the audio with-
out READing any characters. d* is a target value for dr
and 5 < 0 is a hyper-parameter.

Prior works in MT [12| 18] have a detailed description of these
terms.

To compute TJ-Q, we use the mean squared error (MSE)
between the ground truth and generated mel-spectrograms
(aligned using teacher forcing). While the MSE is limited as a
measure of perceived quality [32], its usage as a training objec-
tive for our underlying Tacotron 2 model suggests it is suitable
for our setting. We obtain a quality penalty term given by

r? =X x MSE(ysg),¥s)) (6)
where A < 0. When a READ is executed, TJQ is set to 0.

4.3.3. Terminal Flag

At train time, there are two ways that the episode can terminate:

e R(j) = N (all the characters have been read) At this
point the agent is forced to SPEAK until S(¢) = T. It is
then given a cumulative reward for these SPEAK actions.

* S(j) = T (all the aligned mel-spectrograms have been
consumed) At this point, the agent is given an additional
penalty equal to the number of unread characters and the
episode is terminated.

During inference, the episode runs until our Tacotron 2
model’s termination criterion (i.e., the stop token) is triggered.

4.4. Agent Setup and Learning

The agent receives an observation o; which is passed through
a policy network consisting of a 512-dimensional GRU unit, a
2 layer dense network with ReLU non-linearity, and a softmax
layer, to produce a 2-dimensional vector of action probabilities.

To learn these policy parameters 6, we use the policy gra-
dient method [16] which maximises expected cumulative dis-
counted reward. However, as a variance reduction technique,
we replace the discounted returns G in the update, with a nor-
malised advantage value [33]. To compute this we subtract a
baseline return, by (0;) (Where ¢ parameterises a 3-layer fully
connected network), and then normalise the result [33] 34]]. To

learn the baseline network parameters ¢, we minimise the ex-
pected squared loss between G; and by (0;).

For both terms, the expectation is approximated by sam-
pling a trajectory under the policy . All parameters are trained
jointly on collected batches of transitions.

5. Experiments
5.1. Settings

We use the LJ Speech dataset [35], which consists of English
audio from a single speaker. We partition this dataset into
12,000 train and 1,100 test/validation data points. We train our
modified Tacotron 2 model for 300,000 iterations following the
training routine in [4].

We set the weights of each reward component, w = —1,
B = —10and A = —100, to ensure that the scale of contribu-
tion is comparable. The target number of consecutive characters
read, ¢* is set to 4 while the target average proportion of area
under the policy path, d* is set to 0.5. These values are inter-
pretable levers that allow the model’s behaviour to be tweaked.
The look-back of the attention window was set to 5.

During training, actions are sampled according to the prob-
abilities returned by the policy to encourage exploration of the
observation space. While evaluating, actions are chosen greed-
ily. We use a discount factor of 0.99 and train on batches of
collected transitions at the end of every 10 episodes, using an
Adam optimiser [36] initialised with a learning rate of 10™%.

5.2. Benchmark Policies

To gauge the performance of our agent, we used two types of
benchmark policies, inspired by [17}12]:

Wait-Until-End (WUE): Execute READ actions until the
text buffer is empty and then decode everything. Since this pol-
icy has access to the entire input sentence at the time of decod-
ing, this gives an upper bound on the quality of the synthesised
speech, at the cost of the largest possible delay.

Wait-k-Steps (WKS): Execute a READ action every k
steps, and decode in between. Despite incurring a smaller delay,
the restricted access to the input sentence while decoding may
impact the quality of the generated speech.

5.3. Qualitative Analysis

Figure 2| depicts the attention alignments and policy path for a
sample sentence Figures|2aland |[2b|show that, for a large part
of the decoding process, the WUE and W2S policies have ac-
cess to more characters than required which highlights an avoid-
able latency. Figure [2c|suggests that the W3S policy is able to
reduce these unnecessary READs. However, the resulting policy
path appears to collide with the ‘prominent’ alignments on mul-
tiple occasions. As a result, the audio quality at these points is
compromised because the decoder does not have sufficient con-
text. This motivates the idea that an ideal policy path should hug
the prominent alignments diagonal closely from above to suc-
cessfully balance the quality of synthesis and latency incurred.
Our learnt policy (Figure2d) does precisely that. This suggests
that the agent has in fact learnt to READ only when necessary
and SPEAK only when it has something relevant to output.

! English (and French) audio samples can be found at

https://research.papercup.com/samples/incremental-text-to-speech
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Figure 2: Policy Path with Attention Alignments (English): Each plot depicts the policy path and the attention alignments (by colour).
The greyed out section represents portions of the input sentence that is unavailable as those input characters have not yet been read.
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Figure 3: Average WER vs Latency (dr) on a test set comprising
40 samples from LJ Speech labelled by 5 annotators

5.4. Quantitative Analysis

There are two aspects of the agent’s performance that we track:

Quality: We compute the Mean Opinion Score (MOS) to
measure the naturalness of our audio [4]. We considered
using a MUSHRA test [38]. However, since some policies may
generate unintelligible samples of audio, which in turn could be
scored below a noisy anchor, this approach was set aside. We
are also interested in measuring the intelligibility of the synthe-
sised speech. Automatic speech recognition systems use word-
error rate (WER) to measure the transcription quality [39]. Fol-
lowing this approach, we obtain human transcriptions of the
speech and compute the WER against the ground truth.

Latency: We use the proportion of area under the policy
path, dp € [0, 1] described in Section This metric lacks
interpretability in terms of the actual delay incurred (e.g. the
number of extra characters read). An alternate average lagging
metric has been proposed in the MT setting [18]. However,
the skewed ratio between the source and target lengths for TTS
coupled with a soft alignment between source and target make
this metric challenging to adapt to TTS.

5.4.1. Results

Figures [3] and [] depict the inherent trade-off between quality
and latency. The ground truth marker depicts the value of the
relevant metric for the vocoded ground truth mel-spectrograms.

We begin by observing that the W3S policy incurs the least
delay, closely followed by our online agent, while the W2S
and WUE policies incur substantial delays. In terms of intel-
ligibility, our online agent achieves a better WER than W3S,
and even outperforms W2S despite its sizeable latency advan-
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Figure 4: Average MOS vs Latency (dr) on a test set comprising
40 samples from LJ Speech labelled by 10 evaluators

tage. In terms of naturalness, our agent similarly outperforms
W3S on MOS, but in this case, W2S was, as expected, able to
leverage the additional latency to produce more natural sound-
ing speech.

These findings establish that our agent is able to learn a pol-
icy that successfully balances the quality of the synthesised out-
put against the latency incurred. The W2S policy is either com-
parable (intelligibility) or marginally better (naturalness) than
our online agent, but in doing so, performs a large number of
premature READ actions. Our agent incurs a slightly larger de-
lay than the W3S policy, and manages to outperform it on all
quality metrics.

6. Future Work

Our results show that for neural sequence-to-sequence,
attention-based TTS models, there is no algorithmic barrier to
incrementally synthesising speech from text. It is also inter-
esting to analyse the learnt policy for different languages given
the varied challenges posed (eg. elisions and liasons in French
[40]). We provide samples from an agent trained on the French
SIWIS dataset [41]] with the same setup as described, on our
samples page'.

Furthermore, we used a modified Tacotron 2 model, pre-
trained on full sentences. It would be interesting to analyse
whether jointly learning the Tacotron weights helps synthesise
partial fragments of a sentence better.
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